If it's not what You are looking for type in the equation solver your own equation and let us solve it.
28x^2-36x=0
a = 28; b = -36; c = 0;
Δ = b2-4ac
Δ = -362-4·28·0
Δ = 1296
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1296}=36$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-36)-36}{2*28}=\frac{0}{56} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-36)+36}{2*28}=\frac{72}{56} =1+2/7 $
| 5x(+4)=30 | | 12x-8=4x+12-46 | | n-0,45=8.85 | | 5(4x+2)=180 | | 3x-10+12=x-8+6 | | 3u+15=66 | | 2(172-45)=x | | 3(4x+8)+2=14x | | 2u+5=4u=13 | | Y=4(x-36) | | t+6/t=5 | | x^2+0.05*x-0.003=0 | | 7d-5=261 | | x+24=x+12 | | s+3/4=s-2 | | -x2+6x=-1 | | 58=(3x+2) | | 5x+8(80)=80 | | 1(4x-2x+10)=8 | | -17/18+u=4.33333333333333333333333333333333333333333333333333 | | 5(2-3x=13-14(2x-1) | | 2x+24=4x+20 | | 4x+20=4x+24 | | j+0.6=19/5 | | 5(3x-2)=2x+100+3x | | 13-2x=(-127) | | j+0.6=34/5 | | (5x+4)2-(3x+7)2=-33 | | 2x+24=x+12+x+8 | | 2x+24=x+12 | | 2x+24=x+20 | | x2−10x−6=0 |